
AD-A259 878

DTIC
SELECTE* S FEB 51993D

A Larch Specification of C
Copying Garbage Collection

Scott Nettles
December 1992
CMU-CS-92-219

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213 93-01940

Abstract

Garbage collection (GC) is an important part of many language implementations. One of the most important
garbage collection techniques is copying GC. This paper consists of an informal but abstract description of
copying collection, a formal specification of copying collection written in the Larch Shared Language and
the Larch/C Interface Language, a simple implementation of a copying collector written in C, an informal
proof that the implementation satisfies the specification, and a discussion of how the specification applies to
other types of copying GC such as generational copying collectors. Limited familiarity with copying GC or
Larch is needed to read the specification.

This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical Systems Division
(AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order No. 7,597.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing
the official -Joliciea, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

22

Keywords: formal methods, formal specification, garbage collection, algebraic specification, copying
garbage collection, Larch specification languages, Larch/C specification language

1. Introduction

Automatic storage reclamation, or garbage collection is an important service provided by many language
implementations [11]. There are two major techniques used for garbage collection, reference counting and
tracing. Reference counting requires explicitly accounting for the number of references to each data item.
Tracing collectors trace the pointer graph to find the reachable data. The two major variants of the tracing
approach are Mark and Sweep collectors (MSGC) (7], and Copying collectors (CGC) [3]. Mark and Sweep
collectors mark the data reachable from the roots as they trace out the pointer graph. They then "sweep
up" the unmarked data into a free list for reallocation. Copying collection copies the reachable data of the
graph to an unused portion of memory, leaving the garbage behind.

This paper presents a Larch specification and a simple implementation of copying collection as well as
an informal proof that the implementation satisfies the specification. The specification itself is composed of
two parts, one in the Larch Shared Language (LSL) which is used to specify general properties of CGC, and
one in the Larch/C Language (LCL) which uses the LSL traits to specify all of the C routines used in the
implementation. The specification should be readable even by those not familiar with Larch. For a general
introduction to LSL see [6] [5] and to LCL [4]. Both the LSL and LCL specifications have been syntax and
type checked, although no effort has been made at formal verification.

I do not further consider Mark and Sweep collection in detail. However since it is also based on tracing
the pointer graph, those portions of the specification that deal with tracing apply to it as well. Reference
counting is not addressed at all.

The paper begins with a very abstract description of how a tracing collector works, followed by a de-
scription of the standard implementation techniques used for copying collection. Next, I present the LSL
and LCL specifications, followed by the implementation along with informal proofs that the implementation
satisfies the specification. Finally, I discuss the applicability of the specification to several important variants
of CGC, and some related work on formalizing GC.

2. Tracing and Copying Colection

The pointers contained in data form a directed graph, where the data are the nodes and the pointers are the
edges. Any portion of this graph that a program cannot reach by dereferencing pointers is inaccessible to the
program. Such inaccessible data is called garbage and can be reallocated, while any data that is accessible is
called live and must be preserved. Tracing collectors find the live data by computing the transitive closure
of the points-to relation starting from the set of known live data, called roots. The differences among tracing
collectors lie in what algorithm is used to compute the transitive closure, and what is done to the live data
when they are found by the algorithm. Algorithms for computing transitive closures are graph searching
algorithms, and not surprisingly MSGC uses a depth-first search, and CGC a breadth-first search. (But see
Section 5 for some exceptions to this rule.) Both may use clever representation techniques to avoid using
extra storage beyond that needed for the data while computing the transitive closure.

The following is a general graph searching algorithm. Nodes are divided into two disjoint sets: the seen
nodes, which are known to be in the transitive closure, and the unseen nodes, which may or may not be.
The seen nodes are further divided into two disjoint sets: the visited nodes, which have had the nodes they
refer to added to the seen set, and the unvisited nodes, which have not. The algorithm starts by placing all
the roots in the unvisited set: all other nodes are in the unseen set. It proceeds by selecting some member
of the unvisited set, adding the nodes that it refers to that are unseen to the unvisited set, and then adding
the node to the visited set. When the unvisited set is empty, the algorithm terminates, and all of the live
nodes are in the visited set. Depth-first search of the graph results from managing the unvisited set as a
stack and breadth-first search results from managing it as a queue.

In addition to performing some variant of the algorithm above, tracing collectors perform some additional

1

actions when a node in added to the - set. For MSGC this consists of markin the node so that the
reachable nodes can be distinguiahed from the unreachable ones during the sweep phase. For CGC this
consists of copying the node to a new location in memory. Since other nodes may still refer to the original
node, when a node is copied the original node must be modified so that the fact that it has been copied can
be detected, and where it has been copied to can be found. This is usually done by marking the node as
"forwarded" using a tag and writing a forwarding pointer into the data indicating where it was copied to.

The usefulness of CGC comes in part from the use of a clever encoding of the unseen, unvisited and
visited sets so that no more memory is used by the algorithm than is needed to copy just the live data. The
unseen and seen sets are encoded by placing them in different portions of memory. From-space holds the
unseen set and is where data is copied from; to-space holds the seen set and is where the data is copied to.
Typically CGC visits the data in the graph in a breadth-first manner, and thus the unvisited set must form
a queue. To effect a queue, CGC uses two pointers into to-space, the unscanned pointer and the scanned
pointer. The unscanned pointer points to the first location of to-space that is unused and it forms the tail of
the queue. Data is added to the seen set by copying it to the location referred to by the unscanned pointer.
The scanned pointer points to the location of the first unvisited node, and forms the head of the queue.
Because of the use of unscanned and scanned pointers, CGC terminology generally uses the term unscanned
for unvisited, and scanned for visited.

The standard CGC algorithm is known as the Cheney scan [1]. It utilizes three basic operations: copying,
forwarding, and scanning. Copying copies a node to the location referred to by the unscanned pointer and
sets the unscanned pointer to refer to the first location after the newly copied data. It also modifies the
original data to record the fact that the data has been copied, as well as the location it was copied to. This
is exactly the act of adding the node to the seen set. Forwarding modifies a pointer to from-space data so
that it refers to the to-space copy of the data. If the node has not yet been copied, it copies it. Scanning
a node forwards each pointer in the node and advances the scanned pointer so that it refers to the next
node in to-space. Since forwarding guarantees that a node has been copied, scanning corresponds directly
to adding the node to the visited set. In addition scanning guarantees that no pointers into from-space are
found in scanned nodes.

Given the operations and data structures above, the actual garbage collection algorithm is very simple.
* When the user program (known as the mutator) runs out of storage, the garbage collector is called. The
roots are defined in an implementation dependent manner, and the unscanned and scanned pointers are
directed at the beginning of to-space. Next, each root is forwarded. This causes all directly reachable nodes
to be copied into the unscanned (seen and unvisited) set and updates the roots so that they point to the new
copies. It does not change the scanned pointer. Now the node pointed to by the scanned pointer is scanned
and the scanned pointer is advanced past the newly scanned node. This is repeated until the scanned pointer
equals the unscanned pointer, which indicates the queue is empty. When this happens the roles of the two
spaces are exchanged ("flipped") and the mutator can resume. This process examines each live node twice,
once to copy it and once to scan it, and thus the cost of the algorithm is proportional to the number of live
nodes. The live nodes are copied into a contiguous region of memory, which serves to compact memory.

3. The Specification

All of the key concepts and terminology needed to understand the specification have been introduced. The
specification itself is made up of two kinds of components, LSL traits and LCL interfaces. The LSL traits
define sorts and functions at a high level of abstraction and form the vocabulary used in the interfaces.
The LCL interfaces specify pre-conditions that must be satisfied before the routine may be used, and post-
conditions that the routine must guarantee upon termination.

I first present the traits containing the key sorts and some important general functions. Then I present
the LCL interfaces in a top-down fashion along with the supporting LSL traits. The Appendix contains
several of the less important traits which I do not discuss here.

2

Many of the LSL functions take the form op(arg, art'), which specifies a relation between a pre-state
and a post-state. In LCL interfaces preotates are notated with a- and post-states with a'

3.1. Address trait

Address : trait

includes Se(A, SA) % Sets of Addresses

Figure 1: The Address Trait

Addresses (A) are used to "index" memory. They can only be compared for equality, since no other operations
are defined on them.

3.2. Node trait

Node : trait
includes Address
includes Set(Val, SV) % Sets of Values
includes Set(N, SN) % Sets of Nodes
N tuple of id : UID, addrs : SA, vals : SV

Figure 2: The Node Trait

Nodes (N) are the basic data items of the specification. They consist of a unique identifier, a set of addresses
that are the addresses of the other nodes "pointed to" by the node, and a set of values representing the
non-pointer data in a node.

3.3. Memory trait

A memory (M) (figure 3) consists of four sets of addresses and two maps. Roots is the set of root addresses.
Uncopied, unscanned, scanned are the sets of addresses that are uncopied, unscanned, and scanned. Collec-
tively unscanned and scanned are the addresses that have been copied. The mem map maps addresses to
nodes, while the forwarded map maps the original address of a copied node to its new address.

isValidMemory captures the notion that a memory is well-formed. It is an invariant of all the LCL
interfaces. Since it is the first function we have seen, and an important one as well, let's examine it in
detail. The line

isOneToOne(m.mem) A isOne ToOne(m.forwarded)
says that only one node can be located at any given address in memory, and that only one node can be
forwarded to any given address. The line

is ValidA ddrSet(m. roots, m)
says that all the roots are addresses located in memory. The lines

m.uncopied n m.unscanned = {}
m.uncopied n m.scanned = {}
m.unscanned n m.scanned = {)

say that the uncopied, unscanned, and scanned sets are all disjoint. The line
m.ancopied n domain(rn.forwarded) = {}

says that no uncopied address has been forwarded. The line
m.unsranned U rm.scanned = ran ge(m.forwarded)

says that the addresses which have been copied are exactly those which are mapped to by the forwarded
map.

3

MenteryMaam: trait
Includes Node
includes FstineMajopinA as(ANMap, A, N, SA for SDemasva)
includes FiadfeMappsagAez(AAMap, A, A, SA for SRange, SA for SDomain)
includes Te4seilArg(is ValidAddr, is VklsdAddrSet, A, SA, M)
M tuple of rvots SA,

uncopicd : SA,
uvnacarnned : SA,
scanned: SA,
raem : ANMap,
ferwavided : AAMap

introduces
is.ValidMemory M --+ Beot
isVMUM&dd : A, M -ýBoot
cffectiveAddr :A, M --1 A

asserts
V m: M, a A, n: N

isV.ahdMemory(m) =

uaOsaeTeOne(m.mem) A isOneTeOne(mnjorivarded)
AisVk~idAddrS et(m. roots , in)

Am. ancopied nl min.,scanned ={

Am.uncepied nl m.scanned = {
Am. onecanned nl m.ecsaned = {
Am.uacepied nl demain(m.foruaiaded) ={

Am.ansucanned U m.scanned = i'wuge(m.ferwaorded)
Am.uncepied U m.vuscanned U m.acvaned

-demaine(in.mern)

is ValidAddr(a, m) == if defleed(m.foruwardcd, a)
then deflaed(m. mem, m.fortoarded[aJ)
else defined(m. mem, a)

effectsveAddr(a, m) == If deflncd(m.fertusrded, a)
then m.ferwarded(aJ
else a

implies
converts is VsaidMemery, i. VabdAddr, is ValidAddrSel , effectiieAddr

Figure 3: The MemoryMain Mrait

4

Finally m.uncopied U m.wascanned U m.scanned = domsain(m.mem)
says that all nodes ate referred to by an address in the uncopied, unscanned, or scanned sets.

effectsieAddr translates unforwarded address to forwarded ones, if the node has been copied. The Mem-
oryAuxiliary trait, found in the appendix, defines many simple functions involving memory, mostly serving
to improve the specification's readability.

3.4. Equlv trait

Equi : trait
Includes Memory
Includes PuirwiseElementTestfArg(isEquivAddr, A, A, SA, SA, M, M,

addrsEquiv for alIPas.)
Introduces

isEqtivAddr A, A, M, M -- Bool
isEquivNode N, N, M, M -- Boot
memEquiv : M, M --* Bool

anerts,

V m, m' : M, a, a' : A, n, n' : N
isEquvAddr(a, a', m, i') ==

effectiveAddr(a, m') = effectiveAddr(a', i')

AisEquivNode(nodeAtAddr(a, m), nodeAtAddr(a' , m'), m, W')

isEquivNode(n, n', m, mi) ==
n.id = n'.id
An. vals = n'. vals
AaddrsEquiv(n.addrs, n'.addrs, m, vi!)

memEqvdiv(m, in) ==
is ValidMemory(m) A u ValidMemory(m')
AaddrsEquiv(m.roots, m'. roots, m, Wn)
AaddrsEquiv(allNodes(m), allNodes(m'), m, W°)

Implies
converts isEquivAddr, isEquivNode, addrsEqtiv, memEquv

Figure 4: The Equiv Trait

The Equiv trait captures the notion of equivalence between two addresses, two nodes or two memories. Two
addresses are equivalent if they are equal or one is the forwarded version of the other and the nodes they
point to are equivalent. Two nodes are equivalent if they have the same UID and values and if the addresses
contained in them are equivalent. Two memories are equivalent if they are both well formed and their roots
and all the nodes are equivalent. In addition to the functions directly defined, the function addrsEquiv is
defined by including the trait PairwiseElementTesttArg with the function isEquivAddr, which is used to test
that all elements of one set have equivalent addresses in another. F

VC QUALMTY INPETM-D D

Availability Code

D Avt il npdaor5Dist Special

3.s. Rea,•al, trait

Reachable: trait
includes Memorp
Inroduces

reachable : SA, M -- SA
rt:SA,SA,M -. SA

V m : M,a :A, 6,8 681,82: SA
reackable(se, m) == ri({, do, m)

r,(du, {}, m) == as
ri(ul, inert(a, 62), m) ==

ri(ireert(a, a81),
(uaS U (m.mem(a]).addre) - insert(a, a•j), m)

Implies
converts reachable, r,

Figure 6: The Reachable Trait

The Reachable trait is the heart of the specification: all data reachable from the roots is live. Reachability

is the transitive closure of the "points to" relation starting from some given set of addresses. reachable

is defined using the helper function rl. The first two arguments to rl are the visited and unvisited sets

respectively, reachable invokes rl with the initial addresses in the unvisited set. The main action of ri is to

transfer nodes from the unvisited to the visited set. When a node is transferred to the visited set, all the

addresses directly referred to by it are added to the unvisited set minus any addresses already in the visited

set. When the unvisited set is empty, rl is done. No order of addition to either set is implied, and thus rl

does not specify any fixed search order.

3.6. GC

This section begins the presentation of the main body of the specification. The specification is presented
in a top-down fashion. Both the LCL interfaces and LSL traits are discussed. I typically present several

LCL interfaces that share a common trait, followed by the trait itself. This allows the reader to see how a
function is used before seeing the details of the function itself. A functions name should give some insight
into its semantics.

imports base;
uses GC(memory for !, addr for A);

void gc(void) memory me; (
requires islaitialNtmory(mem^);
modifies mam;

i rlla(neft-, man')

Figure 6: gc Interface

IC is the primary interface to the garbage collector. It performs a garbage collection but stops before

the spacps are "flipped". The pre-condition is that the memory be in its pre-gc state, i.e., essentially that

6

nothing is yet copied. The post-condition is that all the reachable data have been copied and the memory
is in its post-gc state.

imports base;
uses 0C(mamory tor X. addr tor A);

void tinalizeGC(void) memory am; {
roquties isFinaGCemory(nm');
modities mm;
mi~lres

islaitialNestory(mem')
/\ mm-.scanned a mem' . ucopied
/\ mem.roots a mem'.roots
/\ meam.eta -ema.m' m;

}

Figure 7: finalizeGC Interface

finalizeGC "flips" the spaces. The pre-condition is that a GC has just completed, and the post-condition
requires that the implementation ensure that the memory is in a state where the mutator can resume.

GC: trait
includes Memory
includes Equiv
Includes Reachable
introduces.

isFtllGC : M, M -* Bool
isInitialMemory : M --* Bool
isFinalGCMemory : M --* Bool

asserts
V m, m': M

isFiiGC(m, m') --
isInifialMemory(m)
AisFialGCMemory(m')
AmemEquiv(m, m')
AaddrsEquiv(reachable(m.rmots, m), m'.scanned, m, m')

islnitialMemory(m) --
is ValidMemory(m)
A{0 = m.unucanned
A) = m.acanned
A{} = mforwarded

isFinalGCMemory(m) =-
i ValidMemory(m)
A{}) = m.unscaaned
A{) = roots Unforioarded(m)

Implies
converts isFiiGC, isInitialMemory, isFinalGCMemory

Figure 8: GC Trait

The GC trait captures the essential requirements of a copying collector. Initially the memory must be
entirely uncopied. When a GC completes, all the reachable data must have been copied to the scanned set,

7

the root updated, the unscanned set empty, and otherwise the memories are still equivalent. All unreachable
nodes are left in the uncopied set.

3.7. Roots

imports base;
uses GC(mmory for N, addr for A);

void torvardloots(void) memory am;
require* isnitiaXemory(mem');
modifies mmn;
ensures

{} a rootsUnforwarded(aem')
/\ mene .roots a nam .unscanned
/\ {} a ner'.scanned
A\ memlquiv(aem, mam');

Figure 9: forwardRoots Interface

forwardAoots is responsible for forwarding the roots. The pre-condition is that the memory has not
yet had anything copied. The post-condition is that all of the roots have been forwarded and are in the
unscanned set but that otherwise memory is unchanged.

imports base;

addr nextUntormardedloot(void) memory meo; {
requires isValidlemory(mem');
ensures {i0 = rootsUnforwarded(aem)

then result a aNIL
else result \in rootsUnforvarded(mem);

}

Figure 10: nextUnforwardedRoot interface

ne.-t UnforwardedRoot returns an unforwarded root if one exists, aNil otherwise. afilis just a user defined
LCL constant for a nil address.

uses Forvard(memory for X, addr for A);

void forvar•LRootAddr(addr *a) memory me; {
requires

isValidffemory(meal /\ (*a)- \in rootOsUnforwarded(mem-);
modifies men, *a;
ensures

mm'.roots - (aem.roots - {(*a)}) \U {(*a)'}
/\ isForwardSt•p((ea)-, (*a)', m-m, me');

Figure 11: The forwardRootAddr interface

8

forwardReotAddr forwards a single root. The pro-condition is that the address be an unforwarded root.
The post-condition is that the address is forwarded, and that its new value replaces the old value in the
roots. uForwerdStep is defined in the Forwani trait found below in figure 17.

3.8. Scanning

imports base;

void scanUascanned(void) memory mm;
requires

0 a rootsUnforwarded(mema)
/\ aem-.roots a neam.unscanaod
/\ *1 a near .scanned
/\ isValidNemory(moen);

modifies mom;
ensures

me^.nroots = am .roots
\ mem' .uscannod -{}"

/\ memaquiv(mem-, em')
/\ add s~quiv(reachable(mem.roots, mm-),

"meam.scanned, seon, mem');

Figure 12: The scanUnscanned Interface

scan Unscanned completes the transitive closure calculation starting from the forwarded roots. It requires
that the roots all be forwarded and that nothing is scanned. The post-Eondition is that scanning is complete,
and that all nodes reachable from the initial roots have been copied and scanned, but that otherwise the
memories are equivalent.

impoits base;

addr nextUnscannedlode(void) memory mam;
requires isValid~emory(mne);
ensures it {} =• am.unscanned

then result = aeIL
else result \in amem.unscanned;

}

Figure 13: The nextUnscannedNode interface

next UnscannedNode must return an unscanned node unless there are none left, in which case it must
return aNIL.

scanAddr (figure 14) scans a single address. The pre-condition is that the address be unscanned and that
the nodes reachable from the roots also be reachable from the copied set. The post-condition is- that the
address has been scanned, and that the nodes reachable from the roots are still reachable from the copied
set. New nodes may have been added to the copied set.

9

impoats bas;
uses Scan(mmory for N, sdft for A);

void scanAd~d(addr a) ainorY Sen;a
requires

isLValidNrmory(ram)
A\ addrUnscanaed(s., am')
A\ Addrs•quiv(roachablo(mu .roots, rnm),

reachable(copiedlodes(unes), ads').
men-, sem);

modit•los anm;
ensures

isScanstep(a, son-, arm')
/\ addrs8quiv(reachable(saeu.root, uam),

roachable(copiedlodes(rnm'), am'),
"aem, urn');

Figure 14: The scanAddr interface

Scan : trait
includes Memory
includes Forward
introduces

i.ScannedAddr : A, M -- Bool
isScanStep : A, M, M -- Bool

asserts
V m, m : M, a : A

iaScannedAddr(a, m) --
addrScanned(a, m)
AisForwardedAddr(a, a, m, m)
Ai.ForwardedSet((r .mem[a]).addrs,
(m.mem[a]).addrs, m, m)

uScanStep(a, m, m') ==
memEquiv(m, m')
Am.roots = m'.roets
AaddrUnucanned(a, mn)
Aa ddrScanned(a, m')
AisForwardedSet((m.mem[aD).addrs,
(m'.mem(a]).addrs, m, m')

Implies
V m, m' : M, a : A

sSeanStep(a, m, m') * wScarnedAddr(a, m')

converts i.ScansedAddr, isScanStep

Figure 15: The Scan trait

The Scan trait defines functions used to describe scanning. The function uScannedAddr is true if the

address is in the scanned set, and if L ,th it and its references have been forwarded. The function i*ScanStep

relates two memories that differ only in that one step of scanning has occurred. This means that the

- forwarded address of the node is added to the scanned set, and that all of its referents are scanned. isScanStep

iir. j3ScannedAddr.

10

3.9. Forwarding

imports bass;
uses For'ard(aemory for N, addr for A);

void forwardkddr(addir *a) amory ame; {
requires imValidfemory(mu');
modifies emm, *a;
ensures

if isForvardedAddr((*a)', (em)', sae, me')

then (*) a (*&)' /\ sea U am I
else isForwazdStep((*a)-, (*a)', am-, men');

Figure 16: The forwardAddr interface

forwardAddr forwards an address if it has not already been forwarded. If it has been forwarded, then

nothing changes. The post-condition is that an unforwarded address is forwarded. Allowing forwardAddr
to be applied to already forwarded addresses gives additional flexibility to the specification which will be
discussed later.

Forward : trait
includes Memory
includes Copy
includes PairwiseElementTest2Arg(isForwardedAddr, A, A, SA, SA, M, M,

isForUoardedSet for allPass)
introduces

isForwardedAddr : A, A, M, M -1. Bool
iaForwardSlep : A, A, M, M -* Bool

asserts
V m, m' : M, a, a' : A

isForwardedAddr(a, a', m, m') --

isCopiedAddr(a, a', m, m')
AeffeciveAddr(a, m') = a'

iuForwardStep(a, a', m, m') --

memEquiv(m, m')
A addrUnforwoarded(a, m)
AaddrForwarded(a', m')
A(addrUncopied(a, m) =* sCopyStep(a, m, m'))
AisCopiedAddr(a, a', m, m')
Am'.forwarded[aJ = a'
Am.scanned = mW.scanned

Implies
V m, m' : M, a, a' : A

wForwardStep(a, a', m, m') => isForwardedAddr(a, a', m, m')

converts sForwardedAddr, wForwardStep

Figure 17: The Forward trait

The Forward trait defines functions used to describe forwarding. isForwardedAddr says that the address
must be copied, and that at least the post version of the address (a') must refer to the copied version of

the node. The indirectly defined iaForwardedSet function says that for every address in one set of addresses,

11

some address in the other set satisfies isForwriiedAddr. isForwardStep relates an unforwarded address and
a memory to a forwarded address, and a memory in which only the changes needed to forward the address
have occurred. If the address has not been copied, it is. The new address refers to the copy.

3.10. Copying

imports base;
uses Copy(amory for N, addr for A);

void copyAddr(addr a) memory am; {
requires

isVa1idKaory(aem')
/\ addrUncopied(a. eam);

modiules mam;
ensures isCopyStep(a, m -u, mm');

Figure 18: The copyAddr interface

copyAddr copies an uncopied address to a free location. No other changes are made to memory.

Copy : trait
includes Memory
includes Equiv
introduces

isCopiedAddr : A, A, M, M - Bool
isCopyStep : A, M, M --+ Bool

asserts
V m, m' : M, a, a' : A

isCopiedAddr(a, a', m, mi') --
isEquivAddr(a, a', m, m')
A addrCopied(effectiveAddr(a', mi), m')

isCopyStep(a, M, m') ==
memEquiv(m, m')
AaddrUncopied(a, m)
AaddrFmte((m'.forwaided(aj), m)
A addrUnforwarded(m'.forwarded(a], m)
Am' = [m.roots,
delete(a, m.uncopied),
insert(e'.forwiarded(a], m.unscanned),
in.scanned,

rebind(m.mem, a, m'.forwarded(aj),
bind(m.forwarded, a, m'.!orwarded[aI)]

Implies
V m, m' : M,a: A

isCopyStep(a, m, m') *: isCopiedAddr(a, a, m, m')

converts isCopiedAddr, isCopyStep

Figure 19: The Copy trait

The Copy trait defines isCopiedAddr and isCopyStep. isCopiedAddr is true if a and a' are equivalent,

12

and the node they refer to has been copied in m . isCopyStep says a is uncopied and the address it is to be
copied to is free and unforwarded. The memory after copying (mIn is related to memory before copying (m)
in the following way: the roots and scanned sets are unchanged, a is removed from the uncopied set, and its
new location added to the uncopied set, the node referred to by a is now found at the new address, and the
forwarded map has a bound to its new location. isCopyStep only constrains the new location of the node to
be free but says nothing about nodes being copied to contiguous addresses.

4. Implementation and Informal Proof of Correctness

The implementation is simple, designed to be short and easy to understand without sacrificing any details
fundamental to the algorithm. All nodes are "cons" cells containing no data fields and two pointer fields,
car and cdr. Space is allocated for the forwarding pointer explicitly rather than using some part of the node
data as probably would be done in a real collector. Data representation issues such as tagging pointers, node
lengths, etc., while important in a real language implementation, are not essential to capturing the essence
of the copying collection algorithm and are thus ignored.

Originally I had not planned on proving the implementation correct, even in the informal manner done
here. However as the specification proceeded, I found it very difficult to convince myself that I had both
included and excluded the right things. Informally verifying the implementation caused me to make signif-
icant modifications to both the LSL and LCL portions of the specification, and gave me greatly increased
confidence that the specifications are essentially correct. At this point only a complete formal verification
would increase my confidence significantly, and even then I would be surprised if it induced more than minor
modifications.

The presentation follows the same top-down order as that of the specification. First, I present the
implementation's representation memory in the form of the include file gc.h. This is followed by a discussion
of the abstraction function which maps between the representation of memory used in the implementation
and that used in the specification, as well as an invariant which must be preserved by the implementation.
This invariant is needed for some of the proofs. I then present the implementation of each of the interfaces,
along with the informal proof that it satisfies its specification. Unfortunately, this portion of the paper is
difficult to read as it requires frequent back references to the specifications. The complete specification,
found in the Appendix, may be easier to refer to than the specifications in the previous section. The driver
code used to test the garbage collector is omitted.

4.1. The Representation of Memory

The include file gc.h captures the implementation's representation of memory and plays the same role as the
Address, Node, and Memory traits (figures 1, 2, 3).

*define axum=Roots 4

*define nauluzlodes 12

typedetf it addr;

typedef eanu (CONS, FVD) tag...t;

typedef struct {
tag.t tag;
addr fwd;
addr car;
addr cdr;

}node;

13

typedt stract {
addr roots[nazxuutaootaJ;
nods to •mz~ umIodoe];
node from naau~malodo8];
addr unswcanod;
addr scanned;
addr siloc;
addr noztroot;

} nasory;

exter' const add" &IL;

Addresses are simply indices into arrays. Nodes are structs with fields for a tag, a forwarding address,
a car address, and a cdr address. If the tag is CONS then the node is uncopied and the car and cdr field
hold valid pointers. If the tag is FWD then the node has been copied and the fwd field holds the to-space
address of the copy. The memory struct closely mirrors the Memory trait. The root array holds the roots;
only elements which are not aNil are actually roots. The to and from arrays form to-space and from-space
and together make up the mem and forward maps. Any node in from-space which has a tag FWD is part of
the fwd map, while all other from-space nodes and all to-space nodes are part of the mem map. To-space is
divided into the scanned and unscanned sets by the scanned pointer, while the next free location in to-space
is indicated by the unscanned pointer. Next.root is used during the forwarding of the roots to keep track
of the next root to forward. Anoc indicates the next free location during mutation, and bounds the valid
nodes in from-space.

Addresses are just integers. Thus it is impossible to tell if an address should be used as an index into
the from array or the to array just by examining it. Because of this ambiguity the implementation must be
careful to keep track of which array an address refers to. This gives rise to an important set of invariants
which the implementation must maintain. For the root array the addresses located at indices in the range

[O..next.root) refer to the to array, while those at indices in the range [next.root..max.roots) refer to the
from array. (The notation [m..n) denotes the set of addresses including m, but excluding n.) In the from
array, nodes with tag CONS contain references into the from array in their car and cdr fields, and nodes with
tag FWD contain references into the to array in their fwd field. In the to array, all nodes at addresses in the
range [O..scanned) are forwarded and contain only references into the to array, while all nodes at addresses
in the range (scanned..uncopied) are unforwarded and contain only references into the from array. These
conditions are invariants and each routine in the implementation may assume they hold at the beginning of
its execution and must guarantee that they hold at the end. The proofs will argue that these conditions are
maintained.

Now consider the correspondence between the implementation and the specification representations of
addresses, nodes and memory in a somewhat more formal light. The ambiguity noted above implies that
implementation addresses do not uniquely correspond to addresses in the specification. The invarients given
above allow us to disambiguate. An implementation node with a tag of CONS corresponds directly to a
node in the specification, with the car and cdr fields making up the address set of the specification node.
The implementation representation does not contain an explicit UID and the set of values is empty. Now
consider how each component of the specification's memory can be derived from the implementation's rep-
resentation. M indicates the specification's representation of memory, I have used the component names of
the implementations memory directly. First consider the components of M which are sets.

M.roots = {a E [0..maxz.roots) I roots[aJ != aNil)
M.uncopied = {a E [0..alloc) I from[a].tag = CONS }
Munscanned = (swanned..unscanned)
M.canned = [0..scanned)

M.mem consists of the map that maps all the addresses in M.uncopied to the nodes in the from array

14

at those addresses and all the valid addresses in the to array to the nodes in the to array.

V a E M.uncopied. M.mem[a] = from(ae
Vae [O..unscannd) . M.mem[a] = to(a]

Finally M.forward consists of the map which maps all the addresses in the from array which refer to for-
warded nodes to the addresses in those nodes fwd field:

V a E {b E [O..alloc) I from[hl.tag = FWD}. M.forward[a] = from[a].fwd

4.2. gc

This section begins the top down presentation of the code and the informal proof of correctness. The
implementation itself is very simple and will not be commented on extensively. The arguments that the
invariant is VafidMemory is maintained have been omitted as they are obvious but long and tedious.

void gc(void)
{

forwazdloota(o;
scanUnscannedo;

To show that gc satisfies its specification (figure 6) the following must be true: the pre-condition of gc
implies the pre-condition of for•ardRoots, the post-condition of forwardRoots implies the pre-condition of
scan Unscanned, and the post-condition of scan Unscanned implies the post-condition of gc.

The first point is trivial, since the pre-condition of gc is the same as the pre-condition of forwardRoots.
The second point follows directly from the fact the first three conjuncts of the post-condition of fortvariRoots
are the same as the first three conjuncts of the pre-condition of scan Unacanned and the last conjunct of the
post-condition of forwariRootb (memEquiv(mem-, mem')) directly implies the last conjunct of the pre-
condition of scan Unscanned (isValidMemory(mem-)). The mem' in the post-condition of forwardRools is
the same as memr in pre-condition of scan Unscanned.

The final point is also straightforward. Let the state of memory before any execution be m, after ex-
ecuting forwardRoots be m', and after executing scasnUnscmnned be m". After expanding ISFuIIGC and
isFinaiGCMemory, adding some facts from the post-condition of foruiaydRoots, and eliminating any con-
juncts which follow directly from the pre-conditions, it must be shown that:

{ } = rootaUnforwarded(m') A m'.rooft = m'.unacanned
A {} = rn'.acanned A memEquiv(m, in') A mo.roots = rn".root8
A m".unacanned = {} A mernEquiv(m', mn")
A addr8Equiv(reachable(m' .roots, in'), m"nacanned, i', in")

=* memEquiv(m, in")

"A addraEquiv(reachable(m.root8, m), mn" .canned, m, m")
"A iaValidMernory(m") A {} = m".un~canned
A {) = rootsUnforwarded(m")

From the above one can conclude that all of the following hold
memEquiv(m, i') A rnemEquiv(mY, in") : memEquiv(m, mi")

memEquiv(m, in) A m'.roots = m'".roots
A addrsEquiv(reachabe(m'.root8, m'), m".acanned, in, m")
* addr8Equiv(reachable(m.roota, in), m" .canned, in, m")

memEquiv(m', in") * (} = m".unacanned

15

I a_ - r ! _ ! - " . .

as rotoiUnfonarw d(d') A m'.A oe - m".rooe
(){} = roodsUnlorwarded(m")

and thus that the poet-condition of acesoeu•cnea implies postcondition of gc. Therefore gc satisfies its
specification.

4.3. flnaliseGC

void finalisC()
{

addr i;

for (i a 0; 1 < am.scanaod; i++) {
.ea.froaW[i - am.toW;

}

sm. aloc u mens.scanned;
nes.next.._root a um. scanned e mom. unsca¢nned 0;

finalizeGC is used to "flip" the spaces after gc has completed. The pre-condition for ftaalizeGC is satisfied
if it follows gc. For finalizeGCto satisfy its specification (figure 7) the post-condition (islnitialMemory(mem')
A mem-.scanned = mem'.uncopied A memOhroots = mem'.roots A mem-.mem = mem'.mem) must hold after
finalizeGC executes.

The for loop copies scanned to uncopied without changing any addresses, satisfying mem .scanned =
mem'.uncopied and mem-.mem = mem'.mem. The roots are not changed, so mem^.roots = mem'.roots
holds. islnitiaiMemory holds for the the following reasons. Setting scanned and unscanned to 0 means the
scanned and unscanned sets are empty. None of the nodes which were in mem.to and which were copied
into mem.from had a tag FWD, so the forwarded map is empty. In a more typical implementation the copy
probably would not be done, the "flip" might be accomplished purely by changing pointers.

4.4. forwardRoots

void forwvadRoots(void)
{

addr r;

while ((r - nazt•UaorwardodPooto) !- silL) C
forwardkootAddr(kam. roots (3r);

}

To show that forwardRvoota satisfies its specification (figure 9), it must be shown that assuming the pre-
condition and loop termination then the post-condition is satisfied (partial correctness), and that the loop
terminates. Showing partial correctness of the loop requires a loop condition (LC), and loop invariant (LI),
while showing loop termination requires a metric (M) which decreases monotonically with each iteration of
the loop.

LC == = rootsUnforwarded(mem')
LI -- memEquiv(mem^, mer') A {} = nem'.scanned

16

A rnem'.unsannsd C mnwm'.roota
M == - ze(roolsUnforuwarded(mem'))(>= 0]

LI is true before the loop ecrsutes asuming the pro-condition because
mere = meWr' o nemEquiv(memn, meri')
islnitidaMemorP(mem) :* {} = mem.scanned
islnitiaiMemoro(mem) 0 {})= m.uncanned
{ } = m.unscanned *o mem.unecanned C mem.roots

LI implies that the pro-condition for aeriUaforwardedRoot holds, and the poet-condition of nextUnforward-
edRoot guarantees that either the pro-condition for foroardwootAddr holds, or that the loop terminates.

The post-condition of forwerdRiootAddr along with the fact that a is an unforwarded root implies that
LI remains true because:

0) = memX.scanned A mem'.roots = (rem'.roots - (*a)-) U (*a)'
A i.ForuardStep((.a)-, (*a)', mem-, merW')
=: memEquiv(mem^, miern) A {) = meta'.scanned
A mrnem.unacanned C mem'.roots

If the loop terminates then -,LC A LI holds, which satisfies the post-condition of forwardRoots because:
"-LC A LI == {f = rootsUnforwarded(mem')
A memEquiv(memn , mem')
A {J = mei'.scanned A mneme.unscanned C maein'.roots

{} -- rootsUnforwarded(memrn) A {f - mein.scanned
:o mrien.roots C mein.unecanned

mem'.roos C mCne'.unscanned A mere .unscanned C mem'.roota
P mem'.roods = mem'.unscanned

The loop terminates because each time through the loop forwardRoofAddr causes M to decrease. When
it reaches 0 the loop terminates.

4.5. nextUnforwardedRoot

addr nextftnorwardedloot (void) (

while ((mem.roots uem.nozt.rootJ] a- OIL) kk
(mm.next-.root < mazuilaoots)) {

am. next-root++;
}

*if (nem.nextroot >= mazulRuoos) return &NIL;

return mm. nozt_root;

The specification for next UnforwardedRoot is found in figure 10. The code loops through the roots, until
it either finds an entry which is not aNil which it then returns, or it runs out of roots in which case it returns
aNil. The result is an unforwaded root if one remains and aNil otherwise, thus satisfying the poest-condition.

17

4.6. wm rdRootAddr

void rwvardlootAddr(addr .r)(
.sszt(r -r ai-m.rootsua.izn-zroo1)t;
towarddd(r);
st. azoxt.root++;

}

The specification for fortardRoo" ddris found in figure 11. The assert makes sure that foruardRootAddr
is in fact called with the next.-oot so that incrementing next.root correctly reflects the fact that r has been
forwarded. The pre-condition for feorwMAddr is satisfied, and furthermore the invariant guarantees that
ferwardAddr has been called with an unforwarded address. Executing forwardAddr implies that isForward-
Step holds, and modifies *r, which means the old address is effectively removed from the roots and the new
one added, so the post-condition holds. Incrementing next.root maintains the invariant involving which
roots have been forwarded.

4.7. scanUnseanned

void scananscanned(void)
{

addr a;

whil. ((a a nxtUnascannadlodeO) in aNIL) {
scaatddrz();

)

Showing that scan Unscanned satisfies its specification (figure 12) requires showing both partial correct-
ness and loop termination, assuming that the pre-condition for scansUrcanned holds. The loop condition
(LC), and loop invariant (LI), and a monotonically increasing metric (M) are:

LC == merm.unscanned! = {}

LI =- mem.roots
mem'.roots A memEquiti(mem , merm') A addrsEquiv(reachable(mem-, mem .roots),

reachable(mern', copiedNodea(mnem')), mere', merne)

M == size(node&Scanned(mem))[<= size(allNodes(mem))]

Before the loop executes LI holds since
merne = memr =P,
room&.roos -- roem'.roos A rnemEquiv(rmem^, merm')
{) = mems.acanned =I copiedNodes(rem') = unscanned

mem.roota = mem.unscanned
=o addraEquiv(reaCha ble(mem^, roem'.roots),
reachable(mern', coapedNodes(mem')), memr, mere')

LI satisfies the pre-condition for nee UunscasnedNode. The post-condition of nezxtUnscannedNode along with
LI satisfies the pre-condition for scasAddr. The post-condition of scanAddr implies LI since isScanStep
implies that the roots stay constant and that the memories are equivalent and the reachability condition is
an explicit part-0f the post-condition of scanAddr.

If the loop terminates then -'LC A LI hold and the following parts of the post-condition for scan Un-
scanned can easily be discharged:

18

mem^.rocts = mem'.rooia = nem•.roots = mem.roota
meW.unscannedt = {) I= mem'.unscanned = {}

memEquiv(mem, mem') 0 menem~quit(rnem^, mere')
I can simplify the remaining conjunct of the post-condition by noting: merne'.uncanned = {}

A addrsEquiv(reachau e(mem^, mem.roots),
reacha~e(men', copiedNodea(mem')), memr, mere')

addrsEquiv(reachabie(memW, memn.roots),
reachabte(rner', meai.scanned), mem', mern')

Leaving us to show that
LC A LI =s reachable(mere', merem.scanned) = mem'.scanned

Each element in mem'Acanned satisfies i*ScannedAddr which means all of its pointers satisfy isFor-
wardedAddr and thus are either in mem'.scanned or mem'.unscanned. But mem'.unscanned is empty, so
every address referenced by an address in mem'.scanned must in mem'.scanned as well. This means reach-
able(mem', mem'.scanned) = mem'.scanned.

The loop terminates, because each execution of scanAddr adds a node to the scanned set, and the number
of nodes which can be added to the scanned set is bounded by the total number of nodes.

4.8. nextUnscannedNode

addr noxtUnscannedlod.()
it (ne.scanned >a nae.unscanned) return aNIL;
return am. scanned;

The specification of next U"•cnnedNode is found in figure 13. As captured in the abstraction function
unscanned = [scanned..unscanned). Thus if mem.scanned >= mem.unscanned then {f = unscanned, and
aiil should be returned. Otherwise an element of unscanned, mem.scanned, is returned as required by
the post-condition. The specification could be satisfied by returning any unscanned element, but this im-
plementation manages the unscanned set as a queue, with neztiUnscannedNode returning the head of the
queue.

4.9. scanAddr

void scanAddr(adAr n)(
assort(n an man.scanned);
forvardAddr(Oines. tot . car);
forwardAddr(them.ton .cdr);
men. scaned++;

The specification of scanAddr is found in figure 14. The assert makes sure that n is the location of the
first element of the unscanned set and thus that incrementing scanned moves the node located at n from
unscanned to scanned. The pre-condition for each forwardAddr is satisfied and the invariant guarantees
that each is called with an unforwarded address, since all nodes at addresses at or above mem.scanned are
guaranteed to contain only unforwarded addresses. The post-condition for forweardAddr implies that both
the car and the cdr are forwarded and' that memEquiv holds. Since forwardAddr only modifies the address
passed to it, the roots are unchanged. Incrementing scanned moves n into the scanned set without changing
the rest of memory. Taken together the last three points mean that isgcenStep holds. The reachability
condition is satisfied because n is in the copied set and the two forwardAddrs at most add the car and cdr

19

to the copied set so the nodes reachable from the copied set are not changed. The invariant is maintained
because the addrmes in n ae now forwarded, and scanned greater than n, indicating that n is in the scanned
set.

4.10. forwardAddr

void forvardAddr(addr *a){
if (mem.froaal'*4.tag I FVD) copyiddr(*a);
*a Mem. fromC*a].iwd;

}

The specification of forwardAddr is found in figure 16. In this implementation forwardAddr is called only
with unforwarded nodes since in both places forwardAddr is used, the invariant states that the addresses are
unforwarded. The specified interface is more general to allow the specification to be more broadly applicable.
Given that a is unforwarded, forwardAddr must ensure isForwardStep. If the nodi has not been copied, then
its tag is CONS and the pre-condition for coplAddr holds. This along with the post-condition of coplAddr
implies that the (addrUncopsed(a, m) =: i•Cop$Step(a, m, i')) A isCopiedAddr(a, a', m, i') con-
juncts of isForwardStep hold. If the tag is FWD then isCopiedAddr(a, a', m, n') already holds. The
pointer update makes m'.forwarded(a] = a' hold. Neither of these things changes the equivalence between
memories. They also do not change the scanned set, so uForwardStep holds and forwevrdAddr satisfies its
specification.

4.11. copyAddr

void copyAddr(addr a) {
-,.toEaem...uscanned.] a mne.fromla]3;

mem.froma] .tag - FWD;
mom. fromCas . wd a mem.unscanned;
mamt.unscannod++;

The specification of cop pAddr is found in figure 18. addrFree is satisfied because the node is copied to
mem.unscanned which points to a free location, addrUnforwarded is satisfied because mem.unscanned is
not forwarded. The roots and scanned sets are unchanged. Setting mem.from[a].tag = FWD removes the
node from uncopied. Incrementing unscanned adds the new address to unscanned. Copying the node to
unscanned rebinds it in memory. Finally, mem.from(a].fwd = mem.unscanned adds the new address to the
forwarding map. None of this changes the equivalence of the memories. Choosing unscanned as the location
to copy the node to completes the breadth-first management of the unscanned set, with unscanned acting
as the tail of the queue. Since the node is copied to a location at or above scanned, and it contains only
unforwarded addresses,. the invariant holds.

5. Application to Other Garbage Collectors

The implementation in Section 4 shows in detail how the specification applies to a simple two-space copying
collector. It also applies to other copying based collectors including generational copying collectors, incre-
mental copying collectors, and collectors which do not use breadth-first traversal of the node graph. This
section considers how the specification applies to these variations of CGC.

20

5.1. Gene-ational

Generational collectors attempt to minimize the cost of garbage collection by concentrating their efforts on
those portions of memory that are most likely to contain garbage. Typically these are the portions of memory
that have been most recently allocated. Generational collectors divide data into a number of generations
that group the data by how old it is. They then collect younger generations more frequently than the older
ones. (11]

The specification above can be used to describe generational collectors by simply choosing what to
consider as the roots. For simple collectors, the roots are the global data structures, the stack, and the
registers. For a generational collector the roots must also include any pointers from other generations into
the one being collected. Tracking these inter-generational pointers is one of the major design issues in
implementing a generational collector, but lies outside the scope of this specification. Given a set of roots
that includes all the needed inter-generational pointers, the specification can stand without change.

5.2. Non-breadth first

Some research has been done on collectors that do not use a breadth-first traversal of the node graph [121 [9].
The intention is to improve locality by clustering closely connected portions of the node graph. Since data
are accessed by following pointers, a copying strategy that copies subtrees of the graph so that they are
physical close to each other may have this effect.

These collectors can still be described with the specification above. Two techniques can be used to change
the order in which nodes are copied. One technique is to make the implementation's representation of the
scanned set more complicated so as to allow nodes above the unscanned pointer to be in the scanned set.
Since the specification does not dictate the representation of the scanned or unscanned set it is applicable
to this technique. The other technique is to keep the scanned and unscanned sets representation as is, but
to allow references in nodes in the unscanned set to be forwarded. This eager forwarding can change the
order of copying without otherwise changing the basic algorithm, as long as forwardaddr can ignore already
forwarded references. This is why forwardAddr is specified so that it can ignore already forwarded references.

5.3. Incremental

Incremental collectors work by interleaving collection with mutation. Recently work has been done on a new
incremental copying collector that has some unusual properties with respect to the handling of roots [10].
When an incremental collection starts, it uses the roots as "hints" about what to copying, but does not
forward them since that would violate certain invariants needed by the mutator. As the collection proceeds,
the collector periodically resamples the roots for new parts of the graph to be copied. When the incremental
collection is completed, the roots are forwarded, and the spaces "flipped".

The modifications to the specification to accommodate this incremental collector would be more extensive.
The roots would have to consist of the union of all the roots sampled during collection. An interface to allow

the copying of a subset of the roots would be needed. The forwardRoots interface would need to change so
that it could forward only a subset of the roots. The overall structure would need to change to allow for
repeatedly copying roots and the scanning the unscanned portions, forwarding roots only at termination. In
addition, many of the proofs of correctness would need to change.

I mention this style of collection because while working on the specification, I realized that the original
incremental collector implementation was flawed in an important way. All the roots were sampled each time
the incremental collector gets control. In fact for correctness, one only needs to guarantee that the transitive
closure of the roots at a flip is copied. This is obvious from the specification of fIIGC. One still must sample
some of the roots to get the collector started, but once it is started, one only needs to resample when trying

21

to finish. The sampling of unneeded roots mnU well lead to data being copied that does not need to be. This

flaw has been corrected.

6. Related work

Considering its importance, there are surprisingly few published attempts at formalizing garbage collection.
Even The Definition of Standard ML (8] a formal semantics of SML contains the statement

There are no rules concerning disposal of inaccessible addresses ("garbage collection").

The notable exception to this lack is the work by Demmers et. al. (2]. Their work differs from mine
in several important ways. First, they are concerned with characterizing what data is preserved by a
garbage collector (notably conservative and/or generational collectors), rather than capturing the details of
a particular algorithm. In fact, their framework should apply equally to CGC and MSGC, although in their
paper, they apply it primarily to MSGC. In their terminology, my specification models a precise garbage
collector, that is, one which retains exactly those nodes reachable from the roots. They are concerned
with describing imprecise collectors, that is, ones which may retain some nodes which are not reachable
from the roots. They show that such imprecise collectors can be described by a precise collection with an
augmentation to the points-to relation. This is the same sense in which my specification models generational
GC, by augmenting the roots with the needed inter-generational pointers. Another way that their work differs
from mine is in presentation, my formalization is presented in terms of a formal specification language, while
their presentation uses more conventional mathematical notation. Finally they use their formalization to
describe several implementations at a relatively high level of detail, while mine is used to prove the detailed
correctness of a single simple collector.

Acknowledgments

I would like to thank Jim Horning and Jeannette Wing for teaching me Larch and in general for help with
the specification.. Jeannette Wing provided invaluable editorial assistence as well. Jim Homing served as
my supervisor during a summer internship at DEC SRC, where this work was begun. I would like to thank
him and DEC SRC for giving me the opportunity to spend the summer at SRC.

22

References

[1] C. J. Ch4ey.
A nonrecurmve list compaction algorithm.
Commmiomtiown of the ACM, 13(11):677-78, November 1970.

[2] A. Daemer, M. Weuier, B. Hayes, H. Boehm, D. Bobrow,, and S. Shenker.
Combining generational and conservative garbage collection: Framework and implementations.
In 17th Annual ACM pmp. on Principles of Programming Languages, pages 261-269, January 1990.

[3] Robert R.. Fenichel and Jerome C. Yochelson.
A LISP garbage collector for virtual-memory computer systems.
Communications of the ACM, 12(11):611-612, November 1969.

[4] John V. Guttag and James J. Homing.
A tutorial on Larch and LCL, a Larch/C interface language.
In S. Prehn and W. J. Toetenel, editors, VDM91: Formal Software Development Methods, 10 1991.

[5] J.V. Guttag, J.J. Horning, and Andris Modet.
Report on the Larch Shared Language: Version 2.3.
Report 58, DEC Systems Research Center, Palo Alto, CA, April 14, 1990.

[6] J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch in five easy pieces.
TR 5, DEC SRC, 7 1985.

[7] John McCarthy.
Recursive functions of symbolic expressions and their computation by machine.
Communication, of the ACM, 3(4):184-195, April 1960.

[8] Robin Miiner, Mads Tofte, and Robert Harper.
The Definition of Standard ML.
MIT Press, 1989.

[9] David Moon.
Garbage collection in large lisp systems.
In Conference Record of the 1984 A CM Symposium on Lisp and Functional Programming, pages 235-246, August

1984.

[10] Scott Nettles, James O'Toole, David Pierce, and Nicholas Haines.
Replication-based incremental copying collection.
In International Workshop on Memory Managment. Springer-Verlag, September 1992.
Springer-Verlag Lecture Notes in Computer Science. To appear.

[111 Paul B.. Wilson.
Uniprocessor garbage collection techniques.
In International Workshop on Memory Managment. Springer-Verlag, September 1992.
Springer-Verlag Lecture Notes in Computer Science. To appear.

[12] Paul R. Wilson, Micheal S. Lam, and Thomas G. Moher.
Effective static-graph reorganization to improve locality in garbage-collected systems.
In Proceedings of the SIC PLAN Symposium on Programming Language Design and Implementation, pages 177-

191, June 1991.

23

7. Appendiz

7.1. Traits

Address: trait
Includes Set(A, SA) % Sets of Addresses

Node: trait
includes Address
includes Set(Va1, SV) %6 Sets of Values
includes Set (N, SN) % Sets of Nodes
N tuple of id : UID, addra SA, oale: S V

MemoryMain : trait
includes Node
includes FiniteMappingAuz(ANMap, A, N, SA for SDomain)
includes FiniteMappinagA uz(AA Map, A, A, SA for SRange, SA for SDomain)
Includes TestSetUArg(is ValidAddr, is ValidAddrSet, A, SA, M)
M tuple of roots : SA,

uncopied : SA,
uinscanned : SA,
scanned : SA,
mem : ANM~p,
fortoaned : AAMap

introduces
is ValidMemory : M -Boot

is ValidAddr : A, M -~Boot

effectiveAddr : A, M -~ A
asserts

V m : M, a A, n: N
is ValidMemory(m) -

isOneToOne(m.mem) A isOneToOne(m.forwarded)
A is VahdAddrSet (m. roots, m)
Am. unco pied nl m.unscanned ={

Am. ancopied nl m. scanned = {
Am.unscanned nl m.scanned = {
Am.uncopied nl domnain(m.forwarded) ={

Am-mnscanned U m.scanned = rangc(m.forioarded)
Am.unco pied U m.snscanned U m.scanned
=domain (in.mem)

is ValidAddr(a, mn) == If defined(m.fortvarded , a)
then deflned(m.mem, m.forw~arded[a])
ekse defined(m. mem, a)

effectiveAddr(a, m) == If defined(m.forwarded, a)
then m.foruiarded(aJ
else a

implies
converts is ValidMemory, is ValidAddr, is ValidAddrSet, effectiveAddr

24

Equiv : trait
iucludes Memory
includes PairwuseElementTeaeiArg(isEquivAddr, A, A, SA, SA, M, M,

addrsEquiv for aliPas.)
introduces

isEquivAddr A, A, M, M Bool
isEqsivNode N, N, M, M -* Bool
memEquiv : M, M - Bool

asserts
V m, m' : M, a, a' : A, n, n' : N

isEquivAddr(a, a, m, m') =
effectiveAddr(a, m') = effectiveAddr(a', m')

AuEquivNode(nodeAtAddr(a, m), nodeAtAddr(a', m'), m, m')

isEquivNode(n, n', m, m') -

n.id = n'.id
An.vals = n'.vals
AaddrsEquiv(n. addrs, n'. addrs, m, m')

memEquiv(m, mi') ==
is ValidMemory(m) A is ValidMemory(m'"

A addrsEquiv(m.roots, m'.roots, m, m'ý

AaddrsEquiv(allNodes(im", allNodes(m'), m, m')

implies
converts isEquivAddr, isEquivNode, addrsEquiv, memEquiv

Reachable : trait
includes Memory
introduces

reachable: SA, M -* SA

r, : SA, SA, M -+ SA
asserts

V m : M, a : A, as, asi, a82: SA
reachable(as, m) == r, ({}, as, m)

r (as{},if) == as
rl(aui, iasert(a, 482), m) ==

rz(insert(a, as),
(as2 U (m.imem[a]).addrs) - insert(a, as,), m)

implies
converts reachable, rl

25

GC: trait
Includes Memoryr
Includes Equiv
includes Reachable
introduces,

s9P*lIGC : M, M --* Boot
ulis*:talMcmory: M --* Boot
is~inaaGCMemory: M -~ Boot

asserts
V m, m:M

usAllGC(m, MIn)
iuInitialMemory(rn)
AiuFinalGCMemorj(m')
AmemEquiv(m, in')

A addraEquivi(reachable (m. roots, in), n' .scanned, r, mi')

ialnitialMemory(rn) ==
ioValidMcmory(vn)
A{}I = m.nsncanned
A{}I = m.scaruacd
A{}I = m.forwiartlcd

isFinalGCMemory(m) =
is ValidMemorgQ'n)
A{} = m.asacanned
A{}I = roots Unforwarded(m)

implies
converts isFuIIGC, is.lnitialMemory, isFinalGCMcmerij

Scan :trait
includes Memoryj
includes Forwoardi
introduces

iaScannedAddr :A, M -*Boot

isScanStep :A, M, M .~Boot

asserts
V mn, m': M, a: A

isScantaedAddr(a, mn)
addrScanned(a, mn)
AisForuar'dedAddr(a, a, mn, m)
A ispo riardedSet((m.mem (a]). addrs,
(m.mem [a]). addrs, mn, mn)

isScaaStep(a, mn, in')

memEquitv(m, in')

Amn.roo*.a = m'.roota
AaddrUnicanned(a, m)
A addrScanned(a, mn')
AiaForloar'dedSet((m.mem[a]). addrs,
(Mi. mem(a]). addra, mn, i')

implies
V mn, m': M, a: A

26

isScanStep(a, m, in') i* ScuanedAddr(a, in')

converts isScannedAddr, iuScanStcp

Forwuard :trait
Includes Memory

* Includes Copy
Includes PairwiseeEemeetTcatfArg(i.FortosrdedAddr, A, A, SA, SA, M, M,

usFortaardedSct for ailPaua)
* introduces

isForwartiedAddr :A, A, M, M --+ Bool
isForuiartiStep :A, A, M, M -+Bool

asserts
V m, m': M, a, a' :A

isFortvardedAddr(a, a', m, in') =
isCopiedAddr(a, a', m, in')

AeffectiveAddr(a, in') =a'

isForwardStep(a, a', m, in')

memEquiv(m, in')

A addr Unforwanied(a, m)
AaddrForwarded(a', in')

A(addrUncopied(a, m) => isCopyStep(o, m, in'))

AisCopiedAddr(a, a', m, in')

Am' .foruarded[a] = a'
Am.scanned = m'.scavaned

implies
Vm, m' :M, a, a' :A

isForwardStep(a, a', m, in') => isForwtardedAddr(a, a', m, in)

converts isFortoardedAddr, isFo riar'dStep

Copy :trait
includes Memory
includes Equiv
Introduces

isCopiedAddr :A, A, M, M --* Bool
isCopyStep :A, M, M --+ Boot

asserts
Vm, m': M, a, a' :A

ieCopiedAddr(a, a', m, in')

isEquivAddr(a, a', m, in')

AaddrCopied(effectiveAddr(a', in'), in')

a~CopyStep(a, m, in') ==
meinEquiv(m, in')

-. AaddrUncopied(a, m)
A addr~ree((m'.forwarded[a]), m)
A addrUnforw ,arded(m'.forwartted (a] , m)
Am' = [m.roots,

27

delede(a, m.uscoped),
iiesert(m'.forwv~ed~a], m.unscanned),
masceaned,
rebind(m. mess, a, m'.forwarded~a]),
bind(m.foruiurded, a, m'.forwanied[a])]

implies
V m, m': M, a : A

isCopyStep(a, mn, in') *ý asCopiedAddr(a, a, m, in)

converta aaCopiedAddr, usCopySiep

These are some of the less important traits which were not discussed in the text.

Memory: trait
includes MemoryMain
includes MemoryAvssliary

MemoryAutiliary: trait
includes MemoryMain
Includes SefOps
includes Element Test (addrUnforward ed , A, SA, M, addrsUnforioarded for filter)
introduces

nodeMgAddr :A, M --+ N
aliNodes : M -~ SA
copiedNodes M SA
addrFree : A, M-Bool
addrCo pied : A, M .-+ Bool
addrUncopied : A, M --+ Bool
addrUiucanxed : A, M --* Bool
addrScanned : A, M --+ Bool
addrForwezried :A, M --, Bool
addrUnforwartied :A, M -+Bool
addrRoot : A, M --* Bool
roots Unforivariled :M --* SA

aserts,
V m : M, a : A, n : N

nodeAtAddr(a, m) == mn.mein(effectitieAddr(a, in)]

allNodes(m) == m. ancopied U m. unscanned U m.scanned

copiedNodes(m) == m.onecersned U mn.scanned

addrfree(a, m) == -'defined(m.mem, a)

addrCopied(a, rn) == a E copiedNodes(m)
Vdefined(m.forWarted, a)

28

*ddrUsscopied(a, m) == a GE r.uncepied

addrUnscanned(a, m) == a 6 m. unscanned

addrScsimaed(a, m) == a 6 m.scanncd

addrForuwarded(a, m) == a 6z copiedNodes(m)

addr(Jnforwarded(a, m) == a E m.uncopied
Vdefined~n.forw~aried, a)

addrRoot (a, m) == a 6 m. roots

roots Unforioarded(m) == addrs Unforwarded(m. root,m)
implies

converts nodeAtAddr, uilNodes, copiedNodes, addr~rwee, addrCopied,
addr Unco pied , addrUnucanned , addrSeanned , addrFori,.arded,
addrUnforuiarded, addrRoot , roots Unforwarded , addrs Unforwarded

FiniteMappingA at(Map, Domain, Range): trait
includes FiniteMap(Map , Domain, Range)
includes Set(Domain , SDomain)
includes Set (Range , SRange)
introduces

[-:Map, Domain -~Range

unbind :Map, Domain --o Map
rebind: Map, Domain, Domain -~Map

isOneToOne :Map -*Bool
bound :Map, Range -.. Bool
domain :Map --* SDomain
range :Map --+ SRange

asserts
V m : Map, d, di,d 2 :Domain, r, rl,r2 :Range

m[d] = appIy(m, d)

unbind({}, di) == {}
unbind(bind(m, di, r), d2) =

if d,= d2 then m
else bind(unbind(m, d2), dj, r)

rebind({}, dj,d 2) = f}
rebind(bind(m, d, r), d1 , d2) =

If d = d then 6ind(m, d2 , r)
else bind(rebind(m, d1 , d2), d, r)

isOne ToOne({})
isOneToOne(bind(m, d, r)) == -bowxd(m, r) A isOneToOne(m)

-ilsound({}, r)
bound(bind(m, d, rl), r2) == rl r2 V bond(m, r2)

29

domanQu()) =-- {)
domina(biisd(vn, d, r)) == insert(d, dominas(m))

Muago({)) == {J
rwssge(bind(m, d, r)) == inserf(r, range (m))

Implies
V mn: Map, dI: Domain

-,dejined(subind(m, dj), di)

converts unbind, re bind , isOneToOme, bound , 4-[-, domain, range

Pairvusieflement~eatOAry(paua, El, E3, S1, S2, T1, T'2): trait
asumes, Set (EI, SI)
assumes Set(E21 S2)
introduces

peass: El, E2 , T1,T2 -~ Bool
ailPass : S1, S2, TI,T 2 --- Bool
onePasses : El, S2, TI , T'2 -~ Bool
removeP assing :EI, S2, TI, T2 -~ S2

-sets
V 1 : S1,12: :S2, el : El, e2 E2 , tI :T1, t2 : T2

all~aea({}, {I, t1 1 t2)
allPaaa(inserf(ej, si), 82 , i,t2) =

onePeasse(ei, 82, t1,t 2)

-.OftePaesae(ej, {t 1, t2)
onePassee(e 1 , inserf(erj,82), t 1 , t2) =

pass(el,e 2,ti,'2)
VosePaseu(el, 82, t1 , t2)

removef'uaing(e1,{}, 1,t 2) ={
removefsasusig(el, isiert(e2 , 82), t1, t2) =

If Pa8(6 1, e2, t Ist2)
then 82
else inaert(e2, removePa..ing(ei, 82 , tI,t2))

implies
converts aliPasa, onePuasses, rwinoiePassing

TestSet1A rg(elernp, sef~p, E, SE, A) : trait
assumes Set (E, SE)
introduces

sciOp : SE, A Bool
elem~p E, A -~Bool

asserts Ve: E, se : SE, a : A
set Op((}, a)
aet~p(ineert(e, se), a) sef~p(se, a) A elcm~p(e, a)

Implies converts set Op

30

Then are trait from the LSL handbook'.

Set(E, C) : trait
Includes

SetBasics,
Naturwa(N),
DeriOedrders(C, C for <, D for >, C for <, for >)

introduces
delete : E, C -- C
(-I :E--- C
--,--n-,---: ,c--c

ize :C-. N
ame,.ts

V e, eI,e 2 : E,8, 81, 2 : C
{e} == insert(e, {})
e, E delete(e2, a) == e, # e2 Aei E a
e G (a, U 82) == e E 8, V e E 82

e E (a1 n 82) == e E , A e E 82

e E (a, - 82) == e E , A e * 82

size({}) == 0
size(insert(e,s)) == If e S then size(s) + 1 else size(s)
81 _ 82 == 81 - 82 = {}

Implies
AbelianMonoid(U for o, {} for unit, C for T),
AC(n, C),
JoiOp(u),
MemberOp,
PartialOrder(C, _C for <,_ for _>, C for <, D for >),
UnorderedContainer
C generated by {1, (-1, U
V e : E,S,81,s 2 : C

S inser(e,.) # {}
insert(e, inserf(e, s)) == insert(e, s)
81 9_82 == 81 - 82 = {}

converts E,,{-, delete, size, U, n,-, c, D, C, D

SetBesics(E,C) : trait

Introduces0} :-.+c
insert : E, C -- C
-C-,--f- -- :E,C - Bool

a-erts
C generated by {}, insert
C partitioned by E
V a: C,e,e,,eC : E

e , == -•(e E 8)
e {}
e, E irterf(e2 ,8) == el = e2 Vel E

implies
UnorderedContsixer,
MemberOp

SCopyriht 0 1991 3.V. Guttag and Digital ,quipment Corporation.

31

V e,e ,e: E, : C
iuacr(e,) # 0
inaeri(e, iusert(e, s)) =maert(e, a)

converts CE,

SetOps : trait
mSumm

Countable,
SetBasics

includes CollectionOps(false for dups)
Introduces

delete : E, C -* C
-U-,-n-: C,C'- C

asserts
V eel,e2 : E,8,81,a 2 :C

el 6 delete(e 2 , a) == el # e2 A el E 8
e E ('1 U 82) == e G s1 V e E 82
e 6 (s, n 82) == e 61 A e E 82

e E (81 - 82) == E a1 A e 0 82
implies

AbelianMonoid(U for o, {} for unit, C for T),
AC(n, C),
JoinOp(U),
PartialOrder(C, C for <, D for >, C for <, D for >)
C generated by {}, {--},U
V e : E,8,81 ,8 2 : C

size(insert(e, s)) == If e E s then size(s) else succ(size(s))
81 _ 82 == 81 - 82 = 0

converts E, ,{}, delete, size, ul, n, C, D, C, D

ElementTet(paess, E, C, T) : trait
assumes Container
introduces

pas : E, T --o Boot

somePas : C, T -* Boot
allPas : C, T -* Boot
filter : C, T --o C

asserts V c : Ce : E,t : T
-somePa.({}, t)
someePau(insert(e, C), t) -= paa(e, t) V somePass(c, t)
llPaa.({},t)

allPass(inaert(e, c),t) == paa(e,t) A allPass(e, t)
fifter({),t) == {)
flter(inaert(e, c), t) ==

If pa..(e, t) then isnert(e, fiter(c, t)) else filter(c, t)
Impires converts somePasa, aliPaua,filter

32

FinteMap(M, D, R) : trait
inrduess0} :--# M

bind : M,D,R-- M
apply: M, D -- R
defined : M, D -+ Bool

asserts

M generated by (), bind
M partitioned by apply, defined
V m: M,d,dl,d 2 : D,r: R

apply(bind(m, d2 ,r),di) == If d, = d2 then r else apply(m, di)
-idefined({}, d)
defined(bind(m, d2 , r),di) == (d, = d2) V defined(m, d1)

Implies
converts apply, defined

exempting V d: Dapply({}, d)

7.2. Interfaces

imports bass;
uses GC(memory for N, addr for A);

void gc(void) memory mom; {
requires islnitiaMeNmory(nem');
modifies som;
ensures

isFullGC(mm" maon')
/\ isFinalGCNmory(mom');

imports bass;
uses GC(mhoory for M, addr for A);

void finalize=C(void) emory son; C
requires isFinalGCNomory(mom');
modifios men;
ensures

islaitialoemory(mem')
/\ mom. scanned - mm' . uncopiod
/\ meom.roots - mom'.roots
/\ nom.nm - mom'.mom;

imports base;
uses GC(memory for N. addr for A);

void forwardRoota(void) hmoory mom;
requires islaitialtemory(smo);
modifies mom;

33

ensures
(3* arootsUnforwarded(mem')

A mea' roots - mea .unscaaaed
A (1* asmom'scanned
A\ amrnqiv(wmrn amn');

imports base;

addr nexttUlforwarded~oot (void) memory mom;{
requires isValidlemory(amrn);
ensures it (0 a root sftforwazded(amr)

then result -sIlL
also result \in root sUutorward~d(aea^);

uses Forward(semory for N, addr for A)

void forwardi~ootAddr(addr Ca) memory sea;{
requires

is~alidiemory(ame) /\ (*a)- \in root sbidorwarded(mem-);
modifies son, *a;
ensures

amlm'roots - (aeau.roots - ((*a)-)) \T {((*a),)
/\ isForwardStep(C*a), (*a),. Ron-, men');

imports base;

void scanUnscanned(void) memory uno;{
requires

03 a rootslUnforwarded(ame)
A\ am-.roots a smemunscazneod

/\() a urn .scanned
/\isValidlrnory(xme);

modifies uam;
ensures

am-.roots a urn' .roots
/\ urn' uscanned a (3
/\ aemJquiv(amrn sew')
/A addrs~qaiv(reachable(aeu. roots, aem-).

meauscannod, am', urn');

imports base;

addr noxtUnscannediode (void) memory urn;
requires ioValidiemory(mem^);
ensures it (3 a urn * us canned

then result a afIL
else result \in urn .unscanned;

34

imports base;
uses Scan(memory for N, addr for A);

void scanAddr(addr a) memory aem;
requires

isValidNemory(ean)
A addrQnscanned(a, ame)
/A addrslquiv (reachable (em. roots, meal,

reachable(copiedlodes (men'), -eam),
aem', meal);

modifies am;
ensures

isScanStep(a, me', msm')
/\ addrsEquiv(reachable(memn.roots, ame),

reachable(copiodlodes(aem'), am'),
mma, men');

imports base;
uses Forward(amory for M, addr for A);

void forwardAddr(-Adr *a) memory men; {
requires isValidMeory(me-);
modifies son, *a;
ensure$

it isForwardedkddr((*a)-, (*a)', sen', men')
then (ca)" = (ca)' A\ me-' z aem'
else isForwardStep((*a)-, (*a)', aemn, aem');

imports base;
uses Copy(memory for M, addr for A);

void copyAddr(addr a) memory sen; {
requires

isValidMemory (mea)
/\ addrUncopied(a, me.');

modifies mea;
ensures isCopyStop(a, am-., me.');

This is baae.lcl.

abstract type addr;
constant addr aNIL;
abstract type memory;
memory ae.;
uses Nemory(momory for X, addr for A);
uses Reachable(memory tor X, adr for A);
uses gquiv(meory tor I, addr for A);

35

